The role of cannabinoids in the neurobiology of sensory gating: A firing rate model study
نویسندگان
چکیده
Gating of sensory (e.g. auditory) information has been demonstrated as a reduction in the auditory-evoked potential responses recorded in the brain of both normal animals and human subjects. Auditory gating is perturbed in schizophrenic patients and pharmacologically by drugs such as amphetamine, phencyclidine or ketamine, which precipitate schizophrenic-like symptoms in normal subjects. The neurobiological basis underlying this sensory gating can be investigated using local field potential recordings from single electrodes. In this paper we use such technology to investigate the role of cannabinoids in sensory gating. Cannabinoids represent a fundamentally new class of retrograde messengers which are released postsynaptically and bind to presynaptic receptors. In this way they allow fine-tuning of neuronal response, and in particular can lead to so-called depolarization-induced suppression of inhibition (DSI). Our experimental results show that application of the exogenous cannabinoid WIN55, 212-2 can abolish sensory gating as measured by the amplitude of local field responses in rat hippocampal region CA3. Importantly we develop a simple firing rate population model of CA3 and show that gating is heavily dependent upon the presence of a slow inhibitory (GABAB) pathway. Moreover, a simple phenomenological model of cannabinoid dynamics underlying DSI is shown to abolish gating in a manner consistent with our experimental findings.
منابع مشابه
Developing Persian version of Sensory Gating Inventory (SGI): Validity and Reliability
Introduction: Sensory Gating Inventory (SGI) measures behavioral aspects of Sensory Gating (SG). It is a filtering mechanism of brain that prevents irrelevant sensory inputs from entering into higher cortex information processing. It modifies sensitivity to sensory stimuli. Abnormal SG leads to overloading of information into cortex and brain dysfunction. Electrophysiological techniques cannot ...
متن کاملT-type Ca2+ channels in thalamic sensory gating and affective Disorders
Low threshold Ca2+ currents mediated by T-type channels underlie burst spike activities of relay neurons in the thalamus. We have previously reported that knock-out mice for T-type channels show an enhanced nociceptive response to visceral pain, accompanied by an increase in tonic spikes in the absence of burst spikes in thalamic relay neurons. These results raised a possibility that T-type cha...
متن کاملT-type Ca2+ channels in thalamic sensory gating and affective Disorders
Low threshold Ca2+ currents mediated by T-type channels underlie burst spike activities of relay neurons in the thalamus. We have previously reported that knock-out mice for T-type channels show an enhanced nociceptive response to visceral pain, accompanied by an increase in tonic spikes in the absence of burst spikes in thalamic relay neurons. These results raised a possibility that T-type cha...
متن کاملContribution of Somatic and Dendritic SK Channels in the Firing Rate of Deep Cerebellar Nuclei: Implication in Cerebellar Ataxia
Introduction: Loss of inhibitory output from Purkinje cells leads to hyperexcitability of the Deep Cerebellar Nuclei (DCN), which results in cerebellar ataxia. Also, inhibition of small-conductancecalcium-activated potassium (SK) channel increases firing rate f DCN, which could cause cerebellar ataxia. Therefore, SK channel activators can be effective in reducing the symptoms of this disease, ...
متن کاملA Simulation-Based Study of Dorsal Cochlear Nucleus Pyramidal Cell Firing Patterns
A two-variable integrate and fire model is presented to study the role of transient outward potassium currents in producing temporal aspects of dorsal cochlear nucleus (DCN) pyramidal cells with different profiles namely the chopper, the pauser and the buildup. This conductance based model is a reduced version of KM-LIF model (Meng & Rinzel, 2010) which captures qualitative firing features of a...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Neurocomputing
دوره 70 شماره
صفحات -
تاریخ انتشار 2007